
python-archinstall
Release v2.3.0

Anton Hvornum

Jan 14, 2022

RUNNING THE INSTALLER

1 Guided installation 3
1.1 Running the guided installation . 3
1.2 Installing directly from a configuration file . 4
1.3 Options for --config . 5
1.4 Options for --creds . 7
1.5 Options for --disk_layouts . 7

2 Discord 9

3 Issue tracker & bugs 11
3.1 Log files . 11

4 Python library 13
4.1 Installing with pacman . 13
4.2 Installing with PyPi . 13
4.3 Install using source code . 13

5 Python module 15
5.1 Pre-requisites . 15
5.2 Creating a script . 15
5.3 Calling a module . 16

6 Binary executable 17
6.1 Using pacman . 17
6.2 Using PKGBUILD . 17
6.3 Manual compilation . 18

7 Binary executable 19
7.1 Executing the binary . 19

8 archinstall.Installer 21

9 archinstall.Profile 23

10 archinstall.Application 25

11 Profile related helpers 27

12 Packages 29

13 Locale related 31

i

14 Services 33

15 Mirrors 35

16 Disk related 37

17 Luks (Disk encryption) 39

18 Networking 41

19 General 43

20 Exceptions 45

ii

python-archinstall, Release v2.3.0

archinstall is library which can be used to install Arch Linux.
The library comes packaged with different pre-configured installers, such as the default Guided installation installer.

A demo of the Guided installation installer can be seen here: https://www.youtube.com/watch?v=9Xt7X_Iqg6E.

Some of the features of Archinstall are:

• No external dependencies or installation requirements. Runs without any external requirements or installation
processes.

• Context friendly. The library always executes calls in sequential order to ensure installation-steps don’t overlap
or execute in the wrong order. It also supports (and uses) context wrappers to ensure cleanup and final tasks such
as mkinitcpio are called when needed.

• Full transparancy Logs and insights can be found at /var/log/archinstall both in the live ISO and the
installed system.

• Accessibility friendly Archinstall works with espeakup and other accessibility tools thanks to the use of a TUI.

RUNNING THE INSTALLER 1

https://www.youtube.com/watch?v=9Xt7X_Iqg6E

python-archinstall, Release v2.3.0

2 RUNNING THE INSTALLER

CHAPTER

ONE

GUIDED INSTALLATION

This is the default script the Arch Linux Archinstall package.
It will guide you through a very basic installation of Arch Linux.

Note: There are other scripts and they can be invoked by executing archinstall <script> (without .py). To see a
complete list of scripts, see the source code directory examples/

The installer has three pre-requisites:

• The latest version of Arch Linux ISO

• A physical or virtual machine to install on

• A working internet connection prior to running archinstall

Note: A basic understanding of machines, ISO-files and command line arguments are needed. Please read the official
Arch Linux Wiki to learn more about your future operating system.

Warning: The installer will not configure WiFi before the installation begins. You need to read up on Arch Linux
networking before you continue.

1.1 Running the guided installation

To start the installer, run the following in the latest Arch Linux ISO:

archinstall --script guided

The --script guided argument is optional as it’s the default behavior.
But this will use our most guided installation and if you skip all the option steps it will install a minimal Arch Linux
experience.

3

https://archlinux.org/packages/extra/any/archinstall/
https://github.com/archlinux/archinstall/tree/master/examples
https://archlinux.org/download/
https://wiki.archlinux.org/title/installation_guide#Connect_to_the_internet
https://wiki.archlinux.org/
https://wiki.archlinux.org/index.php/Network_configuration
https://wiki.archlinux.org/index.php/Network_configuration

python-archinstall, Release v2.3.0

1.2 Installing directly from a configuration file

The guided installation also supports installing with pre-configured answers to all the guided steps.
This can be a quick and convenient way to re-run one or several installations.

After each successful installation a pre-configured configuration will be found at /var/log/archinstall both on
the live media and the installed system.

There are three different configuration files, all of which are optional.

• --config that deals with the general configuration of language and which profiles to use.

• --creds which takes any superuser, user or root account data.

• --disk_layouts for defining the desired partition strategy on the selected "harddrives" in --config.

Note: You can always get the latest options with archinstall --dry-run, but edit the following json according to
your needs. Save the configuration as a .json file. Archinstall can source it via a local or remote path (URL)

{
"audio": "pipewire",
"bootloader": "systemd-bootctl",
"custom-commands": [

"cd /home/devel; git clone https://aur.archlinux.org/paru.git",
"chown -R devel:devel /home/devel/paru",
"usermod -aG docker devel"

],
"filesystem": "btrfs",
"gfx_driver": "VMware / VirtualBox (open-source)",
"harddrives": [

"/dev/nvme0n1"
],
"swap": true,
"hostname": "development-box",
"kernels": [

"linux"
],
"keyboard-language": "us",
"mirror-region": "Worldwide",
"nic": {

"NetworkManager": true,
"nic": "Use NetworkManager (necessary to configure internet graphically in GNOME␣

→˓and KDE)"
},
"ntp": true,
"packages": ["docker", "git", "wget", "zsh"],
"profile": "gnome",
"services": ["docker"],
"sys-encoding": "utf-8",
"sys-language": "en_US",
"timezone": "US/Eastern",

}

4 Chapter 1. Guided installation

python-archinstall, Release v2.3.0

To use it, assuming you put it on https://domain.lan/config.json:

archinstall --config https://domain.lan/config.json

1.3 Options for --config

(To see which keys are required, scroll to the right in the above table.)

1.3. Options for --config 5

python-archinstall, Release v2.3.0

Key Values Description Required
audio pipewire/pulseaudio Audioserver to be in-

stalled
No

bootloader systemd-bootctl/grub-
install

Bootloader to be installed
(grub being mandatory on
BIOS machines)

Yes

custom-commands [<command1>, <com-
mand2>, . . .]

Custom commands to be
run post install

No

gfx_driver
• “VMware / Virtual-

Box (open-source)”
• “Nvidia”
• “Intel (open-

source)”
• “AMD / ATI (open-

source)”
• “All open-source

(default)”

Graphics Drivers to install No

harddrives [<path of device>, <path
of second device>, . . . }

Multiple paths to block de-
vices to be formatted

No[1]

hostname any Hostname of machine af-
ter installation. Default
will be archinstall

No

kernels [“kernel1”, “kernel2”] List of kernels to install
eg: linux, linux-lts, linux-
zen etc

Atleast 1

keyboard-language Any valid layout
given by localectl
list-keymaps

eg: us, de or de-latin1
etc. Defaults to us

No

mirror-region

{“<Region Name>”: {
“Mirror URL”:
True/False}, ..}
“Worldwide” or
“Sweden”

Defaults to automatic
selection.
Either takes a dictionary
structure of region and a
given set of mirrors.
Or just a region and
archinstall will source any
mirrors for that region
automatically

No

nic

{ NetworkManager:
<boolean> }
{ “eth0”: {“address”:
“<ip>”, “subnet”:
“255.0.0.0”}}
“Copy ISO network
configuration to
installation”

Takes three different kind
of options. Copy,
NetworkManager or a nic
name.
Copy will copy the
network configuration
used in the live ISO.
NetworkManager will
install and configure
NetworkManager

No

ntp <boolean> Set to true to set-up ntp
post install

No

packages [“package1”, “package2”,
..]

List of packages to install
post-installation

No

profile Name of the profile to in-
stall

Profiles are present in pro-
files/, use the name of a
profile to install it without
the .py extension.

No

services [“service1”, “service2”,
..]

Services to enable post-
installation

No

sys-encoding “utf-8” Set to change system
encoding post-install,
ignored if –advanced flag
is not passed

No

sys-language “en_US” Set to change system lan-
guage post-install, ignored
if –advanced flag is not
passed

No

timezone Timezone to configure in
installation

Timezone eg: UTC,
Asia/Kolkata etc. De-
faults to UTC

No

6 Chapter 1. Guided installation

https://wiki.archlinux.org/title/NetworkManager
https://github.com/archlinux/archinstall/tree/master/profiles
https://github.com/archlinux/archinstall/tree/master/profiles

python-archinstall, Release v2.3.0

Note: [1] If no entires are found in harddrives, archinstall guided installation will use whatever is mounted currently
under /mnt/archinstall.

1.4 Options for --creds

Creds is a separate configuration file to separate normal options from more sensitive data like passwords.
Below is an example of how to set the root password and below that are description of other values that can be set.

{
"!root-password" : "SecretSanta2022"

}

Key Values Description Re-
quired

!encryption-
password

any Password to encrypt disk, not encrypted if
password not provided

No

!root-password any The root account password No
!superusers { “<username>”: { “!password”:

“<password>”}, ..}
List of superuser credentials, see configura-
tion for reference

Yes[1]

!users { “<username>”: { “!password”:
“<password>”}, ..}

List of regular user credentials, see configura-
tion for reference

No

Note: [1] !superusers is optional only if !root-password was set. !superusers will be enforced otherwise and
the minimum amount of superusers required will be set to 1.

1.5 Options for --disk_layouts

Note:

The layout of --disk_layouts is a bit complicated.
It’s highly recommended that you generate it using --dry-run which will simulate an installation, without
performing any damaging actions on your machine. (no formatting is done)

{
"/dev/loop0": {

"partitions": [
{

"boot": true,
"encrypted": false,
"filesystem": {

"format": "fat32"
},

(continues on next page)

1.4. Options for --creds 7

python-archinstall, Release v2.3.0

(continued from previous page)

"format": true,
"mountpoint": "/boot",
"size": "513MB",
"start": "5MB",
"type": "primary"

},
{

"btrfs": {
"subvolumes": {

"@.snapshots": "/.snapshots",
"@home": "/home",
"@log": "/var/log",
"@pkgs": "/var/cache/pacman/pkg"

}
},
"encrypted": true,
"filesystem": {

"format": "btrfs"
},
"format": true,
"mountpoint": "/",
"size": "100%",
"start": "518MB",
"type": "primary"

}
],
"wipe": true

}
}

The overall structure is that of { "blockdevice-path" : ...} followed by options for that blockdevice.
Each partition has it’s own settings, and the formatting is executed in order (top to bottom in the above example).
Mountpoints is later mounted in order of path traversal, / before /home etc.

Key Values Description Re-
quired

filesys-
tem

{ “format”: “ext4 / btrfs / fat32
etc.” }

Filesystem for root and other partitions Yes

boot <bool> Marks the partition as bootable No
en-
crypted

<bool> Mark the partition for encryption No

mount-
point

/path Relative to the inside of the installation, where should
the partition be mounted

Yes

start <size><B, MiB, GiB, %, etc> The start position of the partition Yes
type primary Only used if MBR and BIOS is used. Marks what kind

of partition it is.
No

btrfs { “subvolumes”: {“subvolume”:
“mountpoint”}}

Support for btrfs subvolumes for a given partition No

8 Chapter 1. Guided installation

CHAPTER

TWO

DISCORD

There’s a discord channel which is frequented by some contributors.

To join the server, head over to https://discord.gg/cqXU88y and join in.
There’s not many rules other than common sense and to treat others with respect. The general chat is for off-topic
things as well.

There’s the @Party Animals role if you want notifications of new releases which is posted in the #Release Party
channel. Another thing is the @Contributors role can be activated by contributors by writing !verify and follow
the verification process.

Hop in, we hope to see you there! :)

9

https://github.com/archlinux/archinstall/graphs/contributors
https://discord.gg/cqXU88y

python-archinstall, Release v2.3.0

10 Chapter 2. Discord

CHAPTER

THREE

ISSUE TRACKER & BUGS

Issues and bugs should be reported over at https://github.com/archlinux/archinstall/issues.

General questions, enhancements and security issues can be reported over there too. For quick issues or if you need
help, head over to the Discord server which has a help channel.

3.1 Log files

When submitting a help ticket, please include the /var/log/archinstall/install.log.
It can be found both on the live ISO but also in the installed filesystem if the base packages were strapped in.

Tip:

An easy way to submit logs is curl -F'file=@/var/log/archinstall/install.log' https://0x0.st.
Use caution when submitting other log files, but archinstall pledges to keep install.log safe for posting
publicly!

There are additional log files under /var/log/archinstall/ that can be useful:

• /var/log/archinstall/user_configuration.json - Stores most of the guided answers in the installer

• /var/log/archinstall/user_credentials.json - Stores any usernames or passwords, can be passed to
--creds

• /var/log/archinstall/user_disk_layouts.json - Stores the chosen disks and their layouts

• /var/log/archinstall/install.log - A log file over what steps were taken by archinstall

• /var/log/archinstall/cmd_history.txt - A complete command history, command by command in order

• /var/log/archinstall/cmd_output.txt - A raw output from all the commands that were executed by
archinstall

Warning: We only try to guarantee that /var/log/archinstall/install.log is free from sensitive informa-
tion. Any other log file should be pasted with utmost care!

11

https://github.com/Torxed/archinstall/issues

python-archinstall, Release v2.3.0

12 Chapter 3. Issue tracker & bugs

CHAPTER

FOUR

PYTHON LIBRARY

Archinstall ships on PyPi as archinstall. But the library can be installed manually as well.

Warning: These steps are not required if you want to use archinstall on the official Arch Linux ISO.

4.1 Installing with pacman

Archinstall is on the official repositories. And it will also install archinstall as a python library.

To install both the library and the archinstall script:

pacman -S archinstall

Alternatively, you can install only the library and not the helper executable using the python-archinstall package.

4.2 Installing with PyPi

The basic concept of PyPi applies using pip.

pip install archinstall

4.3 Install using source code

You can also install using the source code.
For sake of simplicity we will use git clone in this example.

git clone https://github.com/archlinux/archinstall

You can either move the folder into your project and simply do

import archinstall

Or you can use setuptools to install it into the module path.

13

https://pypi.org/
https://wiki.archlinux.org/index.php/Official_repositories
https://pypi.org/project/setuptools/

python-archinstall, Release v2.3.0

sudo python setup.py install

14 Chapter 4. Python library

CHAPTER

FIVE

PYTHON MODULE

Archinstall supports running in module mode. The way the library is invoked in module mode is limited to executing
scripts under the example folder.

It’s therefore important to place any script or profile you wish to invoke in the examples folder prior to building and
installing.

5.1 Pre-requisites

We’ll assume you’ve followed the Install using source code method. Before actually installing the library, you will need
to place your custom installer-scripts under ./archinstall/examples/ as a python file.

More on how you create these in the next section.

Warning: This is subject to change in the future as this method is currently a bit stiff. The script path will become
a parameter. But for now, this is by design.

5.2 Creating a script

Lets create a test_installer - installer as an example. This is assuming that the folder ./archinstall is a git-clone of the
main repo. We begin by creating ./archinstall/examples/test_installer.py. The placement here is important later.

This script can now already be called using python -m archinstall test_installer after a successful installation of the
library itself. But the script won’t do much. So we’ll do something simple like list all the hard drives as an example.

To do this, we’ll begin by importing archinstall in our ./archinstall/examples/test_installer.py and call some functions.

import archinstall

all_drives = archinstall.list_drives()
print(all_drives)

This should print out a list of drives and some meta-information about them. As an example, this will do just fine.

Now, go ahead and install the library either as a user-module or system-wide.

15

https://docs.python.org/3/library/__main__.html

python-archinstall, Release v2.3.0

5.3 Calling a module

Assuming you’ve followed the example in Creating a script, you can now safely call it with:

python -m archinstall test_installer

This should now print all available drives on your system.

Note: This should work on any system, not just Arch Linux based ones. But note that other functions in the library
rely heavily on Arch Linux based commands to execute the installation steps. Such as arch-chroot.

16 Chapter 5. Python module

CHAPTER

SIX

BINARY EXECUTABLE

Archinstall can be compiled into a standalone executable. For Arch Linux based systems, there’s a package for this
called archinstall.

Warning: This is not required if you’re running archinstall on a pre-built ISO. The installation is only required if
you’re creating your own scripted installations.

6.1 Using pacman

Archinstall is on the official repositories.

sudo pacman -S archinstall

6.2 Using PKGBUILD

The source contains a binary PKGBUILD which can be either copied straight off the website or cloned using git
clone https://github.com/Torxed/archinstall.

Once you’ve obtained the PKGBUILD, building it is pretty straight forward.

makepkg -s

Which should produce an archinstall-X.x.z-1.pkg.tar.zst which can be installed using:

sudo pacman -U archinstall-X.x.z-1.pkg.tar.zst

Note: For a complete guide on the build process, please consult the PKGBUILD on ArchWiki.

17

https://archlinux.org/packages/extra/any/archinstall/
https://wiki.archlinux.org/index.php/Official_repositories
https://github.com/archlinux/archinstall
https://github.com/Torxed/archinstall/tree/master/PKGBUILD/archinstall
https://wiki.archlinux.org/index.php/PKGBUILD

python-archinstall, Release v2.3.0

6.3 Manual compilation

You can compile the source manually without using a custom mirror or the PKGBUILD that is shipped. Simply clone
or download the source, and while standing in the cloned folder ./archinstall, execute:

nuitka3 --standalone --show-progress archinstall

This requires the nuitka package as well as python3 to be installed locally.

18 Chapter 6. Binary executable

https://archlinux.org/packages/community/any/nuitka/

CHAPTER

SEVEN

BINARY EXECUTABLE

Warning: The binary option is limited and stiff. It’s hard to modify or create your own installer-scripts this way
unless you compile the source manually. If your usecase needs custom scripts, either use the pypi setup method or
you’ll need to adjust the PKGBUILD prior to building the arch package.

The binary executable is a standalone compiled version of the library. It’s compiled using nuitka with the flag –stan-
dalone.

7.1 Executing the binary

As an example we’ll use the guided installer. To run the guided installed, all you have to do (after installing or compiling
the binary), is run:

./archinstall guided

As mentioned, the binary is a bit rudimentary and only supports executing whatever is found directly under ./archin-
stall/examples. Anything else won’t be found. This is subject to change in the future to make it a bit more flexible.

19

https://nuitka.net/
https://github.com/archlinux/archinstall/blob/master/examples/guided.py

python-archinstall, Release v2.3.0

20 Chapter 7. Binary executable

CHAPTER

EIGHT

ARCHINSTALL.INSTALLER

The installer is the main class for accessing an installation-instance. You can look at this class as the installation you
have or will perform.

Anything related to inside the installation, will be found in this class.

21

python-archinstall, Release v2.3.0

22 Chapter 8. archinstall.Installer

CHAPTER

NINE

ARCHINSTALL.PROFILE

This class enables access to pre-programmed profiles. This is not to be confused with archinstall.Application which is
for pre-programmed application profiles.

Profiles in general is a set or group of installation steps. Where as applications are a specific set of instructions for a
very specific application.

An example would be the (currently fictional) profile called database. The profile database might contain the applica-
tion profile postgresql. And that’s the difference between archinstall.Profile and archinstall.Application.

23

python-archinstall, Release v2.3.0

24 Chapter 9. archinstall.Profile

CHAPTER

TEN

ARCHINSTALL.APPLICATION

This class enables access to pre-programmed application configurations. This is not to be confused with archin-
stall.Profile which is for pre-programmed profiles for a wider set of installation sets.

Warning: All these helper functions are mostly, if not all, related to outside-installation-instructions. Meaning
the calls will affect your current running system - and not touch your installed system.

25

python-archinstall, Release v2.3.0

26 Chapter 10. archinstall.Application

CHAPTER

ELEVEN

PROFILE RELATED HELPERS

27

python-archinstall, Release v2.3.0

28 Chapter 11. Profile related helpers

CHAPTER

TWELVE

PACKAGES

29

python-archinstall, Release v2.3.0

30 Chapter 12. Packages

CHAPTER

THIRTEEN

LOCALE RELATED

31

python-archinstall, Release v2.3.0

32 Chapter 13. Locale related

CHAPTER

FOURTEEN

SERVICES

33

python-archinstall, Release v2.3.0

34 Chapter 14. Services

CHAPTER

FIFTEEN

MIRRORS

35

python-archinstall, Release v2.3.0

36 Chapter 15. Mirrors

CHAPTER

SIXTEEN

DISK RELATED

37

python-archinstall, Release v2.3.0

38 Chapter 16. Disk related

CHAPTER

SEVENTEEN

LUKS (DISK ENCRYPTION)

39

python-archinstall, Release v2.3.0

40 Chapter 17. Luks (Disk encryption)

CHAPTER

EIGHTEEN

NETWORKING

41

python-archinstall, Release v2.3.0

42 Chapter 18. Networking

CHAPTER

NINETEEN

GENERAL

43

python-archinstall, Release v2.3.0

44 Chapter 19. General

CHAPTER

TWENTY

EXCEPTIONS

45

	Guided installation
	Running the guided installation
	Installing directly from a configuration file
	Options for --config
	Options for --creds
	Options for --disk_layouts

	Discord
	Issue tracker & bugs
	Log files

	Python library
	Installing with pacman
	Installing with PyPi
	Install using source code

	Python module
	Pre-requisites
	Creating a script
	Calling a module

	Binary executable
	Using pacman
	Using PKGBUILD
	Manual compilation

	Binary executable
	Executing the binary

	archinstall.Installer
	archinstall.Profile
	archinstall.Application
	Profile related helpers
	Packages
	Locale related
	Services
	Mirrors
	Disk related
	Luks (Disk encryption)
	Networking
	General
	Exceptions

